
LSCitter: Building Social Machines by Augmenting
Existing Social Networks with Interaction Models

Dave Murray-Rust
Centre for Intelligent Systems and Applications

School of Informatics
University of Edinburgh, Scotland

d.murray-rust@ed.ac.uk

Dave Robertson
Centre for Intelligent Systems and Applications

School of Informatics
University of Edinburgh, Scotland

dr@inf.ed.ac.uk

ABSTRACT
We present LSCitter, an implemented framework for sup-
porting human interaction on social networks with formal
models of interaction, designed as a generic tool for creating
social machines on existing infrastructure. Interaction mod-
els can be used to choreograph distributed systems, pro-
viding points of coordination and communication between
multiple interacting actors. While existing social networks
specify how interactions happen—who messages go to and
when, the effects of carrying out actions—these are typically
implicit, opaque and non user-editable. Treating interaction
models as first class objects allows the creation of electronic
institutions, on which users can then choose the kinds of in-
teraction they wish to engage in, with protocols which are
explicit, visible and modifiable. However, there is typically
a cost to users to engage with these institutions. In this pa-
per we introduce the notion of “shadow institutions”, where
actions on existing social networks are mapped onto formal
interaction protocols, allowing participants access to compu-
tational intelligence in a seamless, zero-cost manner to carry
out computation and store information.

Categories and Subject Descriptors
H.1 [Information Systems]: Models and Principles

General Terms
social machines; coordination; socio-technical systems; so-
cial networks

1. INTRODUCTION
The concept of social machines denotes an increasingly

widespread category of socio-technical systems which sup-
port purposeful human interaction [5]. Central to the the-
ory of social machines is an integrated analysis of both the
human and computational components, as opposed to a tra-
ditional bipartite approach.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.

ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2567948.2578832.

Social machines take many forms, and have some overlap
with domains such as Social machines can be seen as a pol-
yarchy, where the infrastructure of general social machines
is used to build more specific machines for particular pur-
poses [24]. An example of this can be seen in“#icanhazpdf”;
this is a simple social machine built on Twitter, concerned
with the liberation of the scientific literature. Using the
hashtag #icanhazpdf, participants have formed an ad-hoc
community [7], where requests are made for PDFs of scien-
tific papers. The coordination here is carried out entirely
by humans—partly due to the subversive and legally ques-
tionable nature of the activity—but despite the noise in the
channel, it has significant usage[14].

In general, any social machine will embody some kind of
interaction model : a specification of who can do what, when,
and what the effects should be. These are often: i) infor-
mal, as with #icanhazpdf; the interaction structures arise
over time through community engagement. This can lead
to tensions, as newcomers need to entrain themselves with a
complex system[12]; ii) opaque, since they are the net effect
of many pieces of code interacting together; iii) non-user
editable as generally users within the system are given very
limited opportunities to customise the way that interactions
are carried out.

There is generally a permeable boundary between social
and technical programming. For example, hashtags were
not built in to twitter as a coordination mechanism when
it was launched; rather, they were proposed by a user, and
functioned as a social structure, a way to contextualise and
group tweets together[16], and it was only after widespread
community adoption that Twitter created computational ar-
chitecture to support their use.

Electronic institutions [10] offer an alternative approach.
Interaction models are explicitly specified, with roles, mes-
sages, actions and side effects, and actors can select an insti-
tution with which they desire to engage; by treating proto-
cols as first-class objects [17] they can be shared, inspected,
modified, executed and composed. This gives participants
in an interaction far more power to understand and control
their interactions. However, these institutions are rigorously
formal, making their adaptation to human behaviour and
adoption by large communities problematic.

The approach outlined in this paper binds electronic insti-
tutions onto existing social networks, providing a way to cre-
ate new social machines which utilise existing socio-technical
infrastructure to ease adoption. All code is available online1.

1https://bitbucket.org/mo_seph/scalsc-fuzzy

WWW’14 Companion, April 7–11, 2014, Seoul, Korea.

875

https://bitbucket.org/mo_seph/scalsc-fuzzy

2. SHADOW INSTITUTIONS AND AGENTS
The central theme of this paper is the use of shadow in-

stitutions and shadow agents2 to support natural human
interaction on the web. Building on the idea of coordina-
tion artifacts to facilitate interaction among computational
agents [20], and drawing on ideas from the Ambient Intelli-
gence community, [8] introduced the idea of a digital mirror
world, where computational artifacts create digital shadows
of real-world objects. This mechanism projects real-world
state into the digital domain, allowing interaction between
physical and computational entities and objects. Our no-
tion of shadow agents is broadly similar: they are the digital
shadows of people, projecting human interaction into the do-
main of formal systems. Shadow agents act out workflows
on behalf of their human counterparts, interpreting their
actions and making accessible the fruits computational pro-
cesses: coordination, calculation, inference, persistence and
so on.

Shadow institutions are designed around the idea that a
limiting force on the adoption of electronic institutions (and
computational coordination in general) is the cost to humans
of understanding and entraining themselves with complex
structures, and the brittleness with which they operate: the
need for complete compliance.

If we take a set of agents ai ∈ A who want to carry out a
complex task T , then the cost3 might be given by the sum
of the costs to all the agents involved:

Csolo(T) =
∑
ai∈A

C(tai)

If the agents engaged in an institution, the cost then be-
comes the cost to join the institution plus the cost of doing
the task with the support of that institution:

Cinst(T) =
∑
ai∈A

C(Jai,inst) + Cinst(tai)

In many cases, the cost of joining the institution may out-
weigh the reduction in cost for its support—particularly for
one-off tasks.

The motivation behind shadow institutions is to reduce
the cost of joining (ideally to zero), while still reducing the
cost of carrying out the task. An ideal shadow institution
would hence have:

C(Jai,isi) = 0, Cisi(tai) ≤ C(tai) ∀t, ai

The main route towards achieving this reduction in joining
cost is an inversion of control; rather than passively waiting
for participants to learn how an institution works to the
point where they can take advantage of it, a shadow institu-
tion actively looks for patterns of interaction which it under-
stands, and attempts to support them. Some implications
of this are:
• Participants may not know that a shadow institution

exists until it does something for them; a truly zero-
cost institution could be completely invisible until it

2We use shadow here not to signify the crepuscular watchers
of three letter agencies, but rather to relate to the projec-
tion of an object into another space—Plato’s cave wall—or
shadowing, where one person follows and observes another
to improve understanding of how they carry out tasks.
3Cost could be simply effort, or include money, time, safety
etc.

collates, computes and comes back with a recommen-
dation, a summary or some other useful piece of infor-
mation.
• Existing infrastructure where people are already inter-

acting can, and indeed must, be re-used or parasitized
upon. There is no necessity to convince people to use
a new platform, as the institution joins in with what
they are already doing.
• At the same time, as the institution sits outside the so-

cial network infrastructure, it can enable cross-network
interactions by scanning multiple networks simultane-
ously.
• Since participants have not had to go out of their way

to invoke or join an institution, failure is more of an
option. Any system exposed to the vagaries of human
behaviour will break down at some point; in tradi-
tional institutions this failure must be repaired or the
institution stops. With shadow institutions, failure of
the institution is more likely to be a benefit which is
not accrued, rather than a loss of effort or a waste of
people’s time.

3. SYSTEM DESCRIPTION

3.1 Motivating Examples
In order to develop the framework, we have created a

number of example interactions, which are available online4.
Here we provide short descriptions of the motivations behind
two examples, and the machinery which makes it possible.
Other interactions which are not discussed here include col-
laborative hypothesising based on personal data stores and
adding semantic markup to scientific papers.

3.1.1 Meal Coordination
The first example we chose is a pure coordination task,

with a slight twist: at meetings and conferences, it is com-
mon to try to organise group meals, but the membership
of the group is not known; for example, extra people have
joined the meeting without being officially added to the mail-
ing list. In this case, Twitter’s use of hashtags to form
ad-hoc communities is very useful: the meeting can post a
hashtag which anyone interested can follow for information.
However, actually processing a twitter stream to find out
who is interested and what the consensus on where and when
to meet is hard work, and it is useful to have some computa-
tional support. Figure 1 gives a step by step walkthrough of
organising a group meal. A person decides to initiate a meal
organising protocol, and messages the central bot, giving it
a hashtag to denote the ad-hoc community—in this case
#sociam-dinner, to organise meals for the SociaM project.
The bot responds with a message which can be retweeted,
tagged both with the community hashtag—so that it is visi-
ble to the community—and a tag identifying this particular
interaction, so that the bots can identify the relevant mes-
sages. The system then collates responses, keeping track of
who would like to join in, and votes for where and when to
meet. Ideally, the system will be flexible enough, and the
structure of the messages clear enough, that participants do
not need to alter their natural behaviour. The initiator of

4Interaction models can be found at: http://bit.ly/
1ccXgSv, and the bindings files can be found at: http:
//bit.ly/1awRD5o

876

http://bit.ly/1ccXgSv
http://bit.ly/1ccXgSv
http://bit.ly/1awRD5o
http://bit.ly/1awRD5o

InteractionSpec:-<protocol=meal2protocol,
-AgentSpec:<coord3245,role=coordinator(tonight,…)>,
-AgentSpec:<@dave,role=subscriber(coord3245)>>

Twitter Master

dave > @mealbot: organise a
meal tonight #sociam-dinner

found-interaction

create-runner-for-
interaction-2045

@dave

create-agent-coord3245

create-shadow-@dave,
set-role-subscriber

coord3245

subscribe

follow-#int2045

follow-@mealbot

mealbot > @dave: Dinner tonight?
Subscribe and vote for locations on

#int2045 #sociam-dinner
announce

interaction

dave (retweet): Dinner tonight?
Subscribe and vote for locations

on #int2045 #sociam-dinner

@dave

@dave

jen: I’m in! #int2045
#sociam-dinner

@jen

found-role
@jen

create-shadow-@jen,
set-role-subscriber

subscribe

pat: Let’s do the Rockstone at
seven #int2045 #sociam-dinner

@pat

found-role

create-shadow-@pat,
set-role-voter

@pat

vote(Rockstone,seven)

Other people sign up, vote, etc.

dave > @mealbot: OK,
lets call it #int2045@dave

found-role set-role-caller
call

mealbot > @dave: We’re meeting
at the Rockstone at seven @dave

@jen @pat @other_people
#int2045 #sociam-dinner

dave: We’re meeting at the
Rockstone at seven @dave @jen

@pat @other_people #int2045
#sociam-dinner@dave

k(Rockstone,seven,
[@dave,@jen,@pat,...])

announce
conclusion Interaction completed

Stream of messages on existing
social network

Looks for messages
which initiate interactions

Runners

Look for messages
belonging to particular

interactions

Agents

Formal agents running interaction
model. Includes purely computational

agents, and shadow agents
representing humans

Natural human interaction Binding and matching Formal System

Direct message from @dave to
@mealbot is interpreted as
starting a meal organising
protocol, for tonight

Create a unique id for the
interaction, start a bot listening
for tweets relating to that
interaction

Create a shadow agent for
@dave and add it as a subscriber
in the interaction

Fill in a template announcement
and direct message to @dave

@dave retweets, for anyone
following #sociam-dinner

@jem’s tweet is picked up by the
special hashtag, and interpreted
as subscribing to the meal

@pat’s tweet is picked up by the
special hashtag, and interpreted
as voting for a time and place,
which are copied into the formal
process

@dave messages coordinator
that it’s time to make a decision
on time and place

Coordinator decides on the best
time and place, and stores it

The stored term matches a
template tweet, which is direct
messaged to @dave

@dave then broadcasts the tweet
publicly to tell the participants
where to go

Notes

Master bot is listening to the
@mealbot twitter account

AgentSpec:-<@jen,
--role=subscriber(coord3245)>

AgentSpec:-<@pat,
--role=voter(coord3245,
--”Rockstone”,”seven”)>

FoundRole:-caller(coord3245)>

@mealbot

@mealbot

Figure 1: Diagram illustrating all components of an LSCitter interaction: interpretation of a natural inter-
action stream, binding to formal roles, enaction of interaction protocols and interpretation back into natural
language.

the interaction can later message the bot to terminate the
interaction, at which point it will notify anyone who has
subscribed of the most popular time and place.

3.1.2 Taxi Sharing
In Britain, social norms prevent people in queues from

talking to each other; at Edinburgh airport, there is often
a large queue for taxis, and in a small city it is very likely
that many people are going to nearby locations. Traditional
approaches to this kind of problem often involve develop-
ing some kind of ride-share system, with trust and reputa-
tion metrics etc.; in this case any kind of heavyweight so-
lution would be inappropriate for a situation where simply
walking down the line shouting “Is anyone going to Porto-
bello” would suffice. In our model, a taxi-sharing bot can
be started for any location, and will run on a given hashtag,
e.g. #edinburghairporttaxis. If anyone tweets to this bot
that they are going to a rough geographic location in Edin-
burgh, it will search its memory for others going somewhere

nearby in the last few minutes (using some geographic en-
tity resolution mechanism to decide what is “nearby”). If a
match is found, it will tweet to both of them with a meeting
point, so they can then meet and share a taxi.

This exemplifies the benefits of shadow institutions:
• failure is an option, as if the system doesn’t work, no-

one is worse of than they were before. However, if it
does work, people can save money on taxi fares, and
queues are reduced.
• Existing networks are used, both Twitter and the taxi

infrastructure, and their normal operation is augmented
with computational intelligence.
• There is no cost to joining, other than learning that

a magic hashtag exists, which could be easily done
through e.g. stickers or posters near the taxi rank.

3.2 LSC - the Lightweight Social Calculus
In this paper we use LSC to specify interaction models,

although the exact formalism is not important. LSC is an ex-

877

a(invitee(C), A) ::
 dinner(Time,Place) <= a(confirmer, C)
 then
 confirm(yes) => a(confirmer, C) <-- ok(Time,Place)
 or
 confirm(no) => a(confirmer, C)
 then
 a(invitee(C), A) .

Role: description and agent idMessage in:
content <=
sender role

Sequencing

Choice

Resume invitee role Implication: if RHS can be
satisfied, substitute and execute LHS

Message out:
content =>

receiver role

Body

Figure 2: Example LSC clause from the meal or-
ganisation interaction model (slightly modified for
clarity). An agent playing the role of invitee will
wait for a message from a confirmer specifying the
time and place for dinner; the values in the mes-
sage for Time and Place are substituted in, and the
agent then decides if it will_attend, and sends back
the appropriate message. It then resumes the role
of invitee in case of alternate suggestions.

tension of LCC [21], which has been used to represent inter-
action in many systems [22]. The LSC extension is designed
to aid in interactions with humans, primarily by introducing
two predicates: e() for information which should be elicited
from a user, and k() to indicate information which becomes
known through the course of the interaction. We provide an
extremely brief description of LSC here to aid understanding
this paper in isolation5. LSC is most easily understood as
a combination of i) a Prolog-like language; ii) an interpreter
which carries out Prolog style satisfaction and unification;
and iii) a set of rewrite rules which define how interactions
progress. The basic features of the language are i) atoms,
which start with a lower-case letter or are quoted; ii) vari-
ables, which start with an upper case letter; iii) predicates
with a name and arguments, e.g. friends(dave,X) and iv)
implication: likes(dave,X) <-- friends(dave,X). When
an implication is encountered, the system attempts to find
a substitution of variables for values which it can support,
and then applies that substitution to the whole tree. So if
friends(dave,jim) is known, the substitution X=jim is gen-
erated, and the implication would become likes(dave,jim).
This substitution mechanism is used by the engine to thread
information through interactions.

An agent’s state in an interaction can be described by: i)
an LSC term defining the interaction so far; ii) a queue of
messages coming in and going out; iii) any persistent state
associated with the agent; and iv) the LSC protocol the
agent is following. Whenever an agent receives a message
or is asked to take on a role, the rewrite rules are run ex-
haustively over the current state to produce a new state,
along with side effects such as sending messages and storing
generated knowledge.

LSC protocols define agents and their roles, along with
messages which should be sent or received, computation to
be carried out, and information which should be used in the
interaction. Actions can be carried out either in sequence, or
as committed choice alternatives6 (see Figure 2). Each role

5 A more user-oriented description is given at http://
bit.ly/1jEu3Ji
6By committed choice we mean that once an agent starts
down a particular branch of the tree, alternative branches

definition is strictly separate from any others; this means i)
agents only need to know about their half of the interaction
ii) any communication of information between agents (or
between roles in a single agent) must be done explicitly.

3.3 Shadow institution definition
In our model, each shadow institution is based around a

set of LSC protocols, and machinery to bind it to an inter-
action stream. Definitions for terms used the system can be
found in Figure 3.4, and Figure 1 gives an illustration of a
complete interaction.

The institution is instantiated by creating a master bot
Bm, containing a collection of protocols, along with inter-
action matchers (IM : U 9 IS) which match messages U
in the social network to produce interaction specifications
IS. The master bot listens to a certain channel on the so-
cial network (often defined by a @username or #hashtag of
interest) and attempts to match incoming messages with its
interaction matchers. On a successful match, a runner bot
Br is created to run the interaction, using the generated
interaction specification.

The runner bot has a mechanism for creating agents which
can interpret LSC messages and protocols from an AS, thread-
ing in any necessary configuration and special behaviour.
When the runner bot is started, it creates all the agents
given in the IS, which are typically i) a coordinator agent
to manage the interaction; and ii) a shadow agent to repre-
sent the person who initiated the interaction. The runner
then subscribes to the social network, but using a channel
that only picks up messages relevant to this particular in-
teraction. It attempts to match incoming messages using
its collection of RMs. A successful match will generate a
FR, which can be used with the message to create a shadow
agent for the sender (unless one exists already) and assign
the found role to that agent.

3.4 Binding interaction to formal protocols
In order to interact with humans, the system must carry

out translations i) from natural language into LSC ii) from
LSC into natural language. Figure 3 is an example binding
file for a meal organisation protocol. This is the only speci-
fication necessary in addition to the LSC protocols to create
a working Twitter bot.

Natural language is brought into the system by match-
ing messages received from the social network. Matching,
for both master and runner bots can be carried out in any
manner desirable, by providing a partial function from mes-
sages to interaction or role specifications respectively. Here,
we use regular expressions due to their relative transparency,
and easy specification. Figure 3 illustrates this mechanism:
messages which match the pattern on the left produce the
specification on the right, with any named groups in the
regex substituted into variables with the same name in the
data structure given. This provides a clean and transpar-
ent transfer of information from natural language into the
formal system. Some transformations are possible (such as
converting comma separated terms into lists, or parsing LSC
terms if given), and more can be easily added.

As previously mentioned, LSC introduces a knowledge
predicate k(). The intent of this is to a) describe what
is known at the end of the interaction, and b) to allow

are discarded, and no backtracking is allowed

878

http://bit.ly/1jEu3Ji
http://bit.ly/1jEu3Ji

val$interactions=Seq(
$$".*a$meal.*$(?<When>tonight|tomorrow|sunday).*"$~~~>
$$("twitterBmeal",
$$$$$("Coord",$("Comm","twitterBmeal","a(coordinator(When,[],[],Sender),Coord)")),
$$$$$("Sender",("Comm","twitterBmeal","a(subscriber(Coord),Sender)")))

val$roles=Seq(
$$"(?i).*(let'?s$do|how$about|i$vote$for)\\s+(?<Place>\\w+)at(?<Time>\\w+).*"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$~>$"a(voter(Time,Place,Coord),Sender)",
$$"(?i).*(include|countmein|yes|i'm$in|me$too).*"
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$~>$"a(subscriber(Coord),Sender)",
$$"(?i).*(call|enough).*"$$$$$$$$$$$$~>$"a(caller(Coord),Sender)"$)

val$announcers=Seq(
$$"Want$dinner$tonight?$Subscribe$and$vote$for$locations$
$$$$on$#$Comm$$InitialTags"$>$"$Initiator")

def$coordinator_sat$=$store_sat(…$Seq(
$$"confirmed(T,P,People)"$$$$$$$$$$$$~>$"We’re$meeting$at$$P$at$$T$with$$People$
$$$#$Comm$$InitialTags"$>$"$Initiator")$)
val$protocols$=$"twitterBmeal"

Figure 3: Complete specification for the meal insti-
tution, taken (almost) verbatim from the Scala con-
figuration file. interactions and roles map regexes
onto interaction and agent specifications for the
master and runner bots. Named groups are copied
into LSC variables, e.g. in the first regex, the con-
tents of (?<Place...>) are bound to the variable Place

in the a(voter ..) role. announcers gives template
messages to be filled in when an interaction begins,
here as a direct message to the initiator of the inter-
action. coordinator_sat defines how the coordinator
handles storing knowledge, and here LSC terms are
mapped onto template messages. Finally, protocols

defines which protocols should be loaded and made
available to the institution

for this knowledge to be stored persistently. When inter-
acting with humans, it can additionally be taken to in-
dicate that the user should be made aware of the infor-
mation, and within LSCitter, this implies that a message
should be sent to inform them. When an LSC interpreter
encounters a k(Knowledge) term, it will attempt to “store”
it: the coordinator_sat definition in Figure 3 specifies that
if the coordinator agent attempts to store a term matching
confirmed(T,P,A), it should also send the given template
tweet with the the variables substituted into it—in this case,
as a direct message to the person who initiated the interac-
tion. An identical mechanism can be used for shadow agents
to send messages to their respective humans. LSC also in-
troduces the elicitation predicate e(), which is used when
the user should be asked for input; similar techniques can be
used for this, although for brevity no details are given here.

3.5 Related work
In social computation, humans are used to carry out tasks

as an alternative to computers; frameworks exist to script
this kind of interaction such as Jabberwocky/ManReduce
[1], AutoMan [4] and CrowdDB [11]. BPEL4People simi-
larly integrates humans into traditional formal workflows,
but with a more general concept of tasks rather than pure
computation. In the physical world, TaskRabbit7 allows
the crowdsourcing of physical labour, and efforts have been
made to use this to coordinate teams of people on shared,
real-world tasks [3]. Our main part of departure from this
strand of research is a focus on the participants of interac-
tions, rather than the commissioners—that is, how can we

7http://www.taskrabbit.com

Message(U) := 〈sender, body, tags : Str∗, dest : Str∗〉
Clause := 〈Role,Body〉

Protocol(P) := Clause∗
RoleSpec(RS) := 〈comm id, P,Role〉

AgentSpec(AS) := 〈id, P∗, RoleSpec∗, knol : Term∗〉
Intr.Spec(IS) := 〈P, coords : AS∗, S1 : AS, knol : Term∗〉

FoundRole := 〈Role, knol : Term∗〉
Intr.Matcher(IM) := U 9 IS

RoleMatcher(RM) := U 9 RS

ShadowCreator := 〈U, FR〉 → AS

Figure 4: Specifications used in matching messages
to actions and roles in interaction models. Agent
Specifications (AS) give enough information to cre-
ate an agent, with an id, protocols to follow and nec-
essary background knowledge. Role Specifications
(RS) define an agent’s role in a particular interac-
tion, with a communication identifier and a protocol
to use. Interaction Specifications (IS) can be used
to initiate an interaction by defining the protocol
to be used, a collection of agents and any necessary
background knowledge. Found Roles (FR) give the
minimal information used to ask a shadow agent to
take on a role—a role clause, and any extra back-
ground knowledge necessary.

support people doing what they desire to do as opposed to
being useful to some given purpose. More in-line with our
vision are systems like WeDo8 which helps people coordinate
action over Twitter; we would hope to allow communities to
build similar systems, but with a range of behaviour, by
sharing and adapting the interaction models behind them.

The fitting of models to human interaction by extracting
communicative actions has been carried out on a variety of
interactions, including Twitter [26] (but also e.g. email [9]
and music [18])

Additionally, the present work is inspired by work on pro-
gramming the global brain [6] and the social computer [23];
the liberation of programming [13]; and work on collective
intelligence [15].

4. DISCUSSION
This system is a work in progress, so no formal or empir-

ical evaluation has yet been carried out. One aim is to be
able to offer coordination as a service, where end users run
interactions by uploading an interaction model and a bind-
ings file to standard cloud infrastructure. This objective is
largely met by the current system, which needs only the two
files mentioned to run interactions. Early indications are
that the presence of an interaction model makes the natural
language processing task much easier; hence, we have been
able to work entirely with regular expressions rather than
invoking more complex and powerful NLP systems.

An architecture supporting generalised bindings between
human online interaction and formal workflows provides many
exciting opportunities.

One of the potential powers of the system is the ability to

8http://wedo.csail.mit.edu/

879

http://www.taskrabbit.com
http://wedo.csail.mit.edu/

work across different social networks. In this paper, we have
talked exclusively about Twitter, for purely practical rea-
sons: it offers a large userbase, ad-hoc publics, single action
messages and a machine friendly API. However, network
membership is a personal issue, and varies widely. Some
groups, especially younger users, will tend to use multiple
networks in parallel to achieve tasks. By sitting outside of
any given network, but reacting to information in any of
them, a shadow institution can track these cross-network
interactions, and bring all of the actions into a single in-
teraction model, keeping track of responses and state and
interfacing with participants through their preferred chan-
nel.

Secondly, if interactions can be mapped onto formal mod-
els, possibilities arise anywhere where computational intel-
ligence can help. For example, interaction histories can be
analysed—one of the effects of using LSC is that it generates
complete interaction histories, since all operations involve
rewriting the current state tree into an expanded version.
These finished state trees can be computationally analysed,
and information such as provenance can be computed and
stored. At the same time external data can be integrated,
be it from personal data stores or public repositories—the
existing infrastructure supports working with Sparql based
RDF stores, and an emerging personal data store [25] to
achieve persistence and leverage existing knowledge.

Finally, the use of first-class protocols can democratise
the creation of online communities. By creating institutions
which parasitise the (largely privately owned) infrastructure
of the social web, we offer communities the chance to de-
sign their own methods of interaction, without having to
make the decision to walk away from existing tools and tech-
nologies, or create yet another social network. Interaction
protocols can be seen as the DNA of social networks, and
making them explicit allows the community a larger say in
designing and understanding their behaviour. Similarly, we
hope that—possibly coupled with the approaches to identi-
fying patterns in online dialogue mentioned in [9, 26]—an
approach in line with “Desire Lines” [2, 19] can be taken:
users can interact naturally, according to their desires, and
as the patterns of action become apparent, infrastructure
can be installed or modified to support them.

We believe that our approach can be used to create a wide
variety of social machines, which engage computational in-
telligence, but leverage existing relationships and communi-
ties, allowing the organic augmentation of natural interac-
tion with formal architecture.

Acknowledgements
This work is supported by the EPSRC SociaM project under
grant EP/J017728/1.

5. REFERENCES
[1] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. The

Jabberwocky programming environment for structured
social computing. Proc. UIST 11, 2011.

[2] C. Alexander. The Oregon Experiment, volume 3. Oxford
University Press, 1975.

[3] Andrés Monroy-Hernández. Can crowds fill the void left by
defunct newspapers?
http://socialmediacollective.org/2013/11/12/can, 2013.

[4] D. W. Barowy, C. Curtsinger, E. D. Berger, and
A. McGregor. AUTOMAN : A Platform for Integrating
Human-Based and Digital Computation. In OOPSLA’12,
Tucson, 2012.

[5] T. Berners-Lee, M. Fischetti, and M. F. By-Dertouzos.
Weaving the Web. 2000.

[6] A. Bernstein, M. Klein, and T. W. Malone. Programming
the global brain. Comm. ACM, 55(5):41, 2012.

[7] A. Bruns and J. E. Burgess. The use of Twitter hashtags in
the formation of ad hoc publics. In 6th ECPR General
Conference, Reykjavik, Iceland, 2011.

[8] C. Castelfranchi and M. Piunti. AmI Systems as
Agent-Based Mirror Worlds: Bridging Humans and Agents
through Stigmergy. In T. Bosse, editor, Agents and
Ambient Intelligence. Ios Press, 2012.

[9] W. Cohen, V. Carvalho, and T. Mitchell. Learning to
Classify Email into“Speech Acts”. In Proc. EMNLP, 2004.

[10] M. D’Inverno, M. Luck, P. Noriega, J. a.
Rodriguez-Aguilar, and C. Sierra. Communicating open
systems. Artificial Intelligence, 186:38–94, 2012.

[11] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: answering queries with crowdsourcing.
In Proc. ACM SIGMOD 2011, pages 61–72. ACM, 2011.

[12] A. Halfaker, A. Kittur, and J. Riedl. Don’t bite the
newbies. In Proc. WikiSym ’11. ACM Press, 2011.

[13] D. Harel. Can Programming Be Liberated, Period?
Computer, 41(1):28–37, 2008.

[14] J. Liu. Interactions: The Numbers Behind #ICanHazPDF.
http://www.altmetric.com/blog/interactions-the-numbers-
behind-icanhazpdf/.

[15] T. W. Malone, R. Laubacher, and C. Dellarocas. The
Collective Intelligence Genome. MIT Sloan Management
Review, 51(3):21–31, 2010.

[16] C. Messina. Groups for Twitter.
http://factoryjoe.com/blog/2007/08/25/groups-for-
twitter-or-a-proposal-for-twitter-tag-channels/.

[17] T. Miller and J. McGinnis. Amongst first-class protocols. In
Engineering Societies in the Agents World VIII, pages
208—-223. 2008.

[18] D. Murray-Rust and A. Smaill. Towards a model of musical
interaction and communication. Artificial Intelligence,
175(9-10):1697–1721, 2011.

[19] C. Myhill. Commercial success by looking for desire lines.
In Computer Human Interaction, pages 293–304. Springer,
2004.

[20] A. Omicini, A. Ricci, and M. Viroli. Agens Faber: Toward
a Theory of Artefacts for MAS. Electronic Notes in
Theoretical Computer Science, 150(3):21–36, May 2006.

[21] D. Robertson. A Lightweight Coordination Calculus for
Agent Systems. In DALT 2004, LNAI 3476, pages 183–197.
Springer, 2005.

[22] D. Robertson. Lightweight coordination calculus for agent
systems: retrospective and prospective. In DALT 2011,
LNAI 7169, pages 84–89. Springer, 2012.

[23] D. Robertson and F. Giunchiglia. Programming the social
computer. Phil. Trans. Roy. Soc. A, 371(1987), 2013.

[24] N. Shadbolt, D. Smith, E. Simperl, M. Van Kleek, Y. Yang,
and W. Hall. Towards a classification framework for social
machines. In SOCM2013, Rio de Janeiro, Brazil, 2013.

[25] M. van Kleek, D. Smith, N. Shadbolt, and M. Schraefel. A
decentralized architecture for consolidating personal
information ecosystems: The WebBox. In CSCW PIM
2012, 2012.

[26] R. Zhang, W. Li, D. Gao, and Y. Ouyang. Automatic
Twitter Topic Summarization With Speech Acts. IEEE
Audio, Speech, Language Process., 21(3):649–658, 2013.

880

http://socialmediacollective.org/2013/11/12/can
http://factoryjoe.com/blog/2007/08/25/groups-for-twitter-or-a-proposal-for-twitter-tag-channels/
http://factoryjoe.com/blog/2007/08/25/groups-for-twitter-or-a-proposal-for-twitter-tag-channels/

	Introduction
	Shadow institutions and agents
	System Description
	Motivating Examples
	Meal Coordination
	Taxi Sharing

	LSC - the Lightweight Social Calculus
	Shadow institution definition
	Binding interaction to formal protocols
	Related work

	Discussion
	References

