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Abstract 

Chatty Factories is a three-year investment by the Engineering and Physical Sciences Research Council (EPSRC) through its 
programme for New Industrial Systems. The project explores the transformative potential of placing IoT-enabled data driven 
systems at the core of design and manufacturing processes. The research focuses on the opportunity to collect data from IoT-
enabled sensors embedded in products during real-time use by consumers, explores how that data might be immediately 
transferred into usable information to inform design, and considers what characteristics of the manufacturing environment 
might optimise the response to such data. The project also considers implications arising for skills development in the 
education sector as well as ethics in manufacturing. In this paper we provide a vision for future “Chatty Factories”. 

1 Introduction 

The Internet of Things (IoT) is expected to transform digital 
communication, with 29 billion devices expected to be 
connected by 2022. The Industrial Internet of Things (IIoT) is 
reported to be the largest investment sector for IoT1, which 
raises the question of how future industrial systems can 
benefit from the vast volumes of data that will be created. 
This project has been conceived with a long-view towards 
developing factories of the future in 2030 and beyond. 
Therefore, we are not aiming to address manufacturing 
problems in factories as they currently exist, such as process 
optimisation and predictive maintenance. Rather, we are 
envisioning the opportunities provided by IoT and novel 
forms of data analytics that could exist in factories beyond 
2030. 

In current manufacturing systems, taking a product to market 
requires multiple discrete, highly specialised activities across 
research, design and manufacturing disciplines. The Chatty 
Factories vision for the manufacturing factory of the future is 
to take these traditionally discrete activities and collapse them 
into one seamless process that is capable of real-time 
continuous product refinement at an industrial scale. Part of 
achieving this requires us to dissolve traditional academic 
boundaries between the fields of ethnography, design, 
computer science, engineering and advanced manufacturing. 

IIoT offer the opportunity for new insights drawn using real-
time data harvested from sensors embedded in products. We 
see potential to accelerate product refinement through a 
radical product interruption of ‘consumer sovereignty’ based 

                                                             
1 https://www.i-scoop.eu/internet-of-things-guide/iot-spending-2020/ 

around surveys and market research, to ‘use sovereignty’ and 
an embedded understanding of consumer behaviour – making 
products that are fit for purpose based on how they are used. 
Achieving continuous product refinement in response to real-
time data on product use requires: data driven systems that 
provide an auditable, secure flow of information between all 
operations inside and outside the factory; digital tools that can 
interact with physical and virtual life; faster reconfiguration 
and reskilling of the human and robotic elements of the 
factory floor; seamless communication between product 
designers, robotic processes and factory floor production; and 
identification of new creative roles in the labour market to 
support new systems.   

The aims for future Chatty Factories are therefore: 

• Enabling new forms of agile engineering product 
development via “chatty” products that continue to relay 
their experiences–from the consumer world back to 
designers and product engineers–through the mediation 
provided by embedded sensors, IoT and data driven 
design tools. 

• Enabling the manufacturing environment to dynamically 
respond to changes in terms of physical configuration 
and ethical reskilling of production elements such as 
robots and humans by utilising theory from exopedagogy 
and interpretable data analytics. 

• Confronting the challenges of data volume, privacy and 
cybersecurity to develop an access- controlled 
manufacturing ecosystem in which product use data will 
be collated, analysed and disseminated across the factory 
floor, merging Operational Technology (OT) on the 
factory floor with Information Technology (IT) in the 
business.  
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In this paper we will outline the fundamental research 
challenges that the project will address in its lifetime. We do 
not expect to see full realisation of the Chatty Factories vision 
within the project, but aim to develop proof of concept and 
develop the foundational research while rallying the research 
community around these grand challenges to enable the UK 
to be the forefront of future industrial systems.   
 
2. Chatty Factories – Research Objectives 

In the lifetime of this Chatty Factories project, we have three 
strategic objectives that lay the foundations for the 
achievement of the longer terms aims described above. These 
objective are expanded in this section: 

● Pioneer secure IoT data use to understand how products 
are used in the wild  

● Transform the product design cycle by continually 
channelling and visualising product use data and 
improving design-manufacturing links inside the factory 

● Deliver more fluid evolution of products on the factory 
floor through systems more capable of continuous change 
and informed by better human-robot learning 
partnerships.   

2.1: Pioneering secure IoT data use to understand how 
products are used in the wild  
2.1.1: Data collection  
IoT products will be embedded with various sensors that can 
transmit live data about their use and environment. Sensors 
are already regularly embedded in a wide range of products, 
and we anticipate by 2030 they will be much smaller and 
measure many more attributes of the product experience, 
vastly widening the types of product that can be part of the 
Chatty Factories concept. A key challenge within the Chatty 
Factories project is how to gather and make use of this data in 
order to aid design and manufacturing research. Gathering 
data from use in the wild can limit the need for current 
product research studies, such as post-hoc lab studies and user 
experience surveys. Furthermore, in-situ research methods 
can capture the intricate and messy relationships between 
people and products, which may be difficult to assess through 
lab-studies [1].  
 
The Product Data block in Figure 1 shows the overall vision 
of how data would be collected from products “in the wild” 
via IoT infrastructure - that will inevitably change over time - 
but for which we will develop foundational requirements. 
These include security and privacy policies, common data 
structures such that data can be annotated and reused, and 
means for two-way communication with consumers (see 
2.1.2). We will also develop scalable infrastructure to handle 
the volume of data and reduce unnecessary data storage. Part 
of the reduction in noise is addressed in research relating to 
the use of the data itself (see 2.1.2). 
 
2.1.2: Visualising and annotating  
Sensor data can highlight issues with products and how use 
varies across locations, times, user needs and cultures. This 
knowledge can support the development of customised 

products that cater to specific user groups. Within the Chatty 
Factories project, we propose a new method for gaining 
contextually grounded insights about product use in the wild 
through continuous sensor data gathering and limited but 
timely interactions with consumers.  
 
 

 

Figure 1 – The Chatty Factories Vision  
 
This is shown in the Data Annotation block of Fig 1. The 
method will work by exploring artefacts within the data - 
clear points of interest in the product use that warrant further 
investigation. As suggested by Figure 1, artefacts may be 
identified (i) by product ethnographers - people who study the 
use data through visualisation and data exploration methods, 
and (ii) using artificial intelligence methods such as 
unsupervised machine learning (e.g. clustering and self-
organising competitive learning methods) to identify trends 
and anomalies.  Subject to privacy and security 
considerations, ground-truthing sensor data, and establishing 
appropriate modes for communication with users - we will 
enable product ethnographers to interact with consumers to 
conduct data-driven research into why and how these artefacts 
occurred, gaining insights into how the product could be 
better designed to fit its use. The circular arrow in Figure 1. 
shows how product use and ethnographic interaction will be 
cyclical and continue over the lifetime of the product to 
improve consumer experience through continual design 
change suggestions. A major reason for the ethnographer-
consumer interaction is to assign some ‘meaning’ to the 
artefact (i.e. an explanation for the trend or anomaly in the 
data). Ethnographers will be able to label artefacts to attribute 
context later on in the process (see 2.1.3). Example labels 
include drops, cracks, unusual environmental exposure, 
unexpected orientation etc. 
 
This new research method leverages the experiences and 
needs of consumers, but it also has the capacity to be 
invasive. To alleviate these ethical considerations, the project 
will investigate ways to gain meaningful insights without the 
use of sensors, such as GPS, cameras, and microphones. 
Instead we will ground truth the data through the proposed 
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interactions with users. Users can be queried about the 
activity that is of interest to designers, live as it is happening. 
The machine learning element will be tailored to identify 
novel artefacts but limit these interactions. This combination 
of live data, machine learning algorithms, and communication 
with consumers will enable designers and researchers to 
understand the motivations and issues around product use. 
 
2.1.3: Model building  
Once data use artefacts have been identified and assigned a 
label by ethnographers, we will use the labels and associated 
data to train supervised machine learning algorithms. This is 
shown in the Product Use Models block of Figure 1. The 
rationale behind this is to automatically identify points of 
interest in data as it streams into the factory. If we train 
models to detect drop, crack or extreme temperature exposure 
instances, this can be flagged, and the product designers can 
be made aware of how regularly these things happen. In 
addition to the supervised machine learning, designers may 
use this information to drive the placement of sensors on 
products with a view to design innovations. Take the crack 
scenario, embedded sensors may detect this, but the designer 
may wish to know how this affects the product. In 2.2 we will 
discuss Digital Twins as a method to utilise product data. We 
propose to overlay product use data onto a Digital Twin of the 
product design and map sensor data from IoT onto the Twin. 
Acoustic sensors are an example of how the crack artefact can 
drive new sensor placement on the product based on regular 
events detected in incoming data. Future alerts to crack 
artefacts can then be mapped back to the Twin and design 
tweaks can be made to reduce these in future.  
 
2.1.4: Cyber Security  
Cyber security is a critical issue surrounding the 
implementation and adoption of innovative products and 
services. Threat actors will capitalise on the evolving nature 
and complexities that come with technological innovations 
such as the Internet of Things (IoT). Unless there is a clear 
focus from the start on understanding new vulnerabilities and 
mitigating them by design, threat actors can disrupt safety 
critical control systems by manipulating vulnerabilities in 
software, communication channels, security policies, and 
even social engineering.  

We will conduct a thorough risk assessment of the Chatty 
Factories vision; examining data flows within and between 
systems, and identifying potential threats to confidentiality, 
integrity and availability (CIA).  The project will explore the 
implications of opening the factory floor to IoT and develop a 
security architecture using a defence-in-depth approach, 
which employs industry best practices and standards (e.g. 
NCSC2 and the Purdue model [2]). For example, leveraging 
Intrusion Detection Systems (IDS), access control and secure 
communication channels, and developing methods to detect 
malicious activity in the pipeline from product to factory floor 
to identify activities that compromise the integrity of the data 
flow from end to end.  

                                                             
2 https://www.ncsc.gov.uk/guidance/security-industrial-control-systems 

Risk factors additional to CIA that also require management 
relate to transparency and trust in the system. Collapsing the 
previously distinct design and manufacturing process to 
rapidly push design changes through to manufacturing will 
require a clear pathway of decision making and potentially 
the ability to expose the logic of the decision should anything 
go wrong in the end product. For instance, if data drives a 
new design change, which subsequently fails at the 
production stage, how do the design and manufacturing team 
reverse engineer the decision and roll it back to a previous 
successful state? 

2.2: Transforming the product design cycle by continually 
channelling and visualising product use data and improving 
design-manufacturing links inside the factory 
 
2.2.1: Data to design  
Applying real-world product usage data to improve product 
designs is not in-itself novel. Formula one cars already 
contain sensors that provide automotive designers and 
engineers with data to improve racing performance. However, 
the ability to utilise real-world usage insights in the consumer 
market at scale will enable two significant opportunities for 
innovation in data-driven product design [3]. 

The first opportunity is to enable continuous product 
refinement to cut manufacturing costs, and improve product 
lifespan, sustainability, and user satisfaction. In this situation 
designers will be able to better understand real use of 
products, refine design solutions, and manufacturing 
instructions accordingly. For example, reinforcing parts of 
designs that are most susceptible to failure, and iteratively 
testing micro-product variations via real-world AB testing ‘in 
the wild’ to fine-tune designs. Notably, over time this could 
result in product speciation [4], whereby standard design 
solutions are replaced by an explosion of data-driven tailored 
solutions to suit different customers, use cases, and/or 
geographic locations.  

The second opportunity is to enable new forms of disruptive 
innovation, allowing businesses to leverage usage insights of 
current products to identify trends and new value propositions 
that can be fed into early stage concept design processes to 
help inspire new ideas for future products. Giving them the 
advantage of being first to market in this new space. 

2.2.2: Visualising and filtering 
Critically, to deliver continuous product refinement and 
disruptive innovation designers must be able to create and test 
new ideas. As per the New Forms of Design block of Figure 
1, the capability to ask questions of the data, reveal new 
insights, and adapt product sensors to answer difficult 
questions will be core to enabling new forms of data-driven 
design.  

A challenge in enabling IoT-based data-driven design is the 
designer’s ability to make sense of, and meaningfully query 
the data. Referencing the crack scenario discussed in 2.1.3, if 
a designer is trying to eliminate cracking in a product then 
they might like to ask the following questions of the data. 
Where are the cracks emerging? Are there any specific events 



4 
 

that often precede this type of failure? If it is caused by an 
impact, what is the location of the impact? What is the 
ambient temperature when this cracking emerges? How does 
this mode of failure impact the structural integrity of other 
parts of the design? Some of these questions might be easily 
answered by looking at the existing data collected from 
product sensors (e.g. location of cracks). Some might require 
additional filtering, processing, and/or prediction based on 
available data to reveal insights (e.g. what events precede the 
cracking). Others might demand new, additional, and/or 
replacement of sensors (e.g. what is the temperature during 
cracking). 

2.2.3: New types of Digital Twins 
A Digital Twin [5] is an electronic replica of a product, 
factory, smart city or even the human body from which real 
time data fed-back from installed sensors can be visualized 
and/or predictions made. It emulates the real world by 
replicating physical laws that impact a process. Digital twins 
of manufacturing systems enable evaluation of the processes 
to correct production lines before implementation in the real 
world [6], thereby saving costs, ensuring quality and 
informing design at an early stage.  
 
In the Chatty Factories model, required changes in the 
product and consequent changes on the factory floor will first 
be tested in their respective digital twins and results fed back 
simultaneously to multiple stakeholders. This enables 
complete inspection of the production process and its effect 
on the product, saving cost resources in time, components and 
energy. Furthermore, such digital twins can also be utilised to 
train personnel in virtual environments, while providing 
valuable feedback from them on the production process from 
an expert user standpoint. 
 
While digital twins are common within high-value 
manufacturing domains, they are rarely if ever used within 
high-volume product design domains. Technologies that 
utilise real-time IoT usage data and manufacturing constraints 
directly from the factory to inform product design at scale do 
not yet exist [7], yet will likely provide entirely new 
opportunities for design-based SMEs. 

To enable data-driven product design at scale, the Chatty 
Factories model requires design-based digital twins that can 
deal with populations of live products, and that can combine 
usage data with manufacturing factory-based twins to make 
informed design changes that can be passed to the factory 
floor. 

2.2.4: Communication between design and production twins, 
through to factory floor   
Factors that govern the quality of products (e.g. unit cost, 
time to produce) are the result of both design and 
manufacturing decisions. But in reality, there is often a 
significant disconnect between the decisions made at each 
point. For example, a designer may suggest a change to a 
digital CAD model to cut production costs, yet such changes 
may require an additional assembly step during 
manufacturing that eliminates the intended saving altogether. 

Sophisticated data-driven design at scale will require an 
understanding for how design decisions impact both real-time 
customer use, and manufacturing operations. This will enable 
two significant benefits. Firstly, it will allow coordinated 
innovation throughout the process. In this situation, product 
use data might be used to increase speed of production in 
parallel with improving the consumer experience of the 
product. Secondly, a close connection between design and 
manufacturing will be required to rapidly push updated 
product solutions into production on the factory floor. 

To reduce the cost of iterations between design and 
manufacturing, communication between their corresponding 
digital twins is necessary. This means that the manufacturing 
process can be tested against constraints imposed by the 
capabilities and accuracies of production elements. 
Information on such constraints can be fed to designers to 
inform their proposed changes before production requests are 
sent. Moreover, it may be necessary to make the production 
line more flexible and powerful to grant product 
modifications. The costs and benefits of such modifications 
may also be predicted virtually. This reduces the time to 
production and ensures greater flexibility to the process. 

2.3: Deliver more fluid evolution of products on the factory 
floor through systems more capable of continuous change 
and informed by better human-robot learning partnerships.   
 
2.3.1: New theories of machine learning and applying these 
to training and collaborative reskilling of humans and robots  
Traditionally robots and human worked in separate 
environments with secure cage barriers between them. The 
more recent introduction of human-safe robots is making it 
possible for the robots and humans to work collaboratively in 
the same space while maintaining a safe working environment 
[8]. This creates an opportunity to benefit from the flexibility, 
intelligence and dexterity of human workers, while 
maximizing use of automated systems in highly repetitive 
tasks. Machine learning techniques including natural 
language processing, image processing and data analysis as 
well as artificial intelligence approaches such as optimisation 
algorithms are now viable methods to deal with challenges in 
the shop floor. Examples of such challenges collaborative 
systems may encounter are to determine who does what and 
when; improve the ability of robot to communicate with, and 
respond to, expert human collaborators more effectively; and 
improve robustness of the automated systems to changes in 
the production floor environment and/or product design and 
manufacture.  
 
Chatty Factories therefore focuses on human-robot 
collaborative manufacture enhanced with advanced machine 
learning, pedagogical theory, interpretable data analytics and 
direct demonstration to move beyond staged manual 
refinement and increase productivity. A pedagogical 
environment (See 2.3.2) will support new ways to transfer 
knowledge between the human and robot. This is particularly 
important as human experts may have different methods to 
perform the same task that must be effectively transferred to 
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the robot. We therefore seek to develop new machine learning 
methods to accommodate these variances.  
 
A key challenge is that the kinematic and dynamics of robots 
are different from those of humans. For instance, in the case 
of a Snake robot, the movement methods are completely 
different. Hence, we further seek to optimise automated 
assistance and transfer these skills to the human knowledge 
use side.  Such dynamic reskilling of production elements on 
the factory floor, with integrated Digital Twins, will minimise 
training time to ensure maximum flexibility and efficiency. 
Results will then enable manufacturing ecosystems that can 
continuously reskill and reorient the human and robot 
production elements in response to rapid design changes 
based on use data - while ensuring compliance within any 
regulatory structure.  
 
2.3.2: New theories of pedagogy  
One purpose of this project is to think of new ways in which 
humans and robots might work and learn together and to 
consider the implications of this. A starting point is to analyse 
the limitations of interdisciplinary literatures on Human-
Robot Interaction (HRI) and the related field of Human-
Computer Interaction (HCI), and Machine learning.   A 
critique of the literature on HRI / HCI is that it is limited in 
the way in which it considers pedagogical relationships 
between entities.  

Despite their focus on relationships HCI / HRI literature often 
treats the human and robot as separate and autonomous 
entities. Other literatures hold alternative views on the best 
ways to conceptualise humans, robots, and the relationship 
between them. For example, we could see very different 
perspectives on human-robot interaction from the application 
of Actor Network Theory (ANT), which pays attention to the 
ways in which people and objects learn together in 
assemblages [9], and Object Oriented Ontology (OOO), 
which views humans and robots as distinct objects, yet they 
may also create emergent properties which produce systems 
that are larger than the sum of their parts [10].  

From an exopedagogical perspective [11] and from the 
perspective of other theories such as Donna Harraway’s 
Cyborg Manifesto [12], a critique can be drawn of the 
essentialist assumptions of human nature in the HCI/HRI 
literature. The cyborg critique of mainstream theory is that the 
human is perceived to have various human qualities which 
he/she essentially shares with all other humans; thus it is 
possible to have a field called ‘learning science’, which 
creates models of the ways in which all humans learn. Robots 
are perceived to have robot qualities, which may draw upon 
these ideas about universal human learning.  Exopedagogy 
looks critically at the ‘human type entity’, showing how many 
aspects of the human cannot be captured by human discourses 
of pedagogy or ‘the human’ as a category – there is always an 
excess. This might open up new possibilities for learning with 
robots, based on an ethos of creativity rather than 
instrumentalism.   

All of these theories suggest future directions for human-
robot interactions and pedagogies which are not usually 
considered in the HCI/HRI literature.   This may include 

looking at assemblages and emergent properties (collective 
learning) and cyborg / alien methods of learning which are 
currently not part of learning science.  This involves a 
conceptual leap in how we are looking at learning and 
training.  As there are multiple theories of ‘post-human’, or 
otherwise non-essentialist, pedagogy we will create a 
typology to conceptualise human-machine learning. We will 
use the typology to categorise learning in manufacturing 
environments with different organisational forms in the 
United Kingdom and United States. This will be the basis of 
the socio-technical framework. 

The socio-technical framework and research findings will be 
used in an iterative process to challenge current ways of 
thinking around new forms of machine learning that underpin 
human-robot collaboration (see 2.3.1). 

2.3.3: Effects of changing designs on the manufacturing 
process  
Changing product designs pose significant challenges to the 
overall manufacturing process. In traditional manufacturing 
task assignments to workers are typically rigidly decided prior 
to production, with limited ability to reorientate factory floor 
elements. In a continually evolving product design 
environment though this will hinder the capability of the 
factory floor to adapt to changes, increasing production costs 
and time.  
 
In the Chatty Factories model, manufacturing tasks will be 
completed within a collaborative team composed of multiple 
element types (e.g. human, robot, automated processes, etc.), 
with production indicators collected to dynamically quantify 
capabilities and quality of production across work timelines. 
Data from these individualized production elements will be 
used to optimise the full production process by creating a 
dynamic production plan that obeys regulatory restrictions 
while adapting to production variations. This starts with an 
assembly plan automatically generated during the design 
stage as currently happens. But the plan will then be updated 
based on quantifiable production data, to enable a fluidly 
evolving production environment. With the further integration 
of digital twins (Section 2.2.3), new theories of machine 
learning (Section 2.3.2), and more efficient software 
interfaces to the designers (Section 2.2.1) we will speed up 
the time to launch, and respond to design changes in dynamic 
production requirements [13]. 
 
2.4 Effects of Chatty Factories on the future labour force and 

society 
The socio-technical framework (2.3.2) will not only consider 
process and pedagogy but also values and politics. Through 
focus groups with industry, government and other 
stakeholders we will consider the implications of the Chatty 
Factory model for skills and society.  We will examine the 
implications of the Chatty Factory for human/machine 
symbiosis, for training and skills and for questions of value 
creation and distribution.  

The Chatty Factories model has particular implications for 
how we think about skills and vocational education.  Rather 
than vocational education being front loaded, the dynamic 
factory would involve real time training and reskilling where 
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distinctions between human, robot and A.I. learning break 
down.  This could have dramatic implications for models of 
apprenticeship where dynamism would mean that there is no 
formal end to processes of human training, robots (who would 
acquire knowledge as production continues) could also be 
apprentices, and firm-level or industry A.I. / distributed 
ledger technology might replace the role of government as 
regulator of training.  On the other hand, such systems might 
lead to co-operative skill share methods in manufacturing. 

3 Expected Outcomes 

Outcomes from the programme of research include: 
 
● IoT-enabled methods to achieve a real-time view of the 

way products are used  
● Novel computational intelligence and mathematical 

methods to reduce noise in product sensor data and 
identifying ‘useful’ data artefacts that inform an 
understanding of how products are used. 

● Novel ethnographic methods to make use of this data in 
the design process, allowing product designers to quickly 
and efficiently respond to data as it comes in, creating a 
more responsive product development cycle and data-
driven design innovation. 

● Software tools and visualisation methods that will allow 
creative designers to better understand how products are 
being used “in the wild” and to exploit these insights to 
accelerate product innovation 

● Software methods for automatically compiling digital 
designs into “hybrid” manufacturing instructions along 
with methods for validating the instructions (two-way 
design/manufacture digital twin communication) 

● An understanding of the practical implications of opening 
up the factory floor by investigating new data security 
and the risks of converging IoT with Information 
Technology (IT) and Operational Technology (OT)  

● Methods to enable dynamic reskilling of production 
elements on the factory floor to minimise training time 
and ensure maximum flexibility and efficiency when 
fabricating products that are varying in their design. 

● Mapping how assumptions about human learning inhibit 
organisations from developing these values 

 
4 Conclusions 

With Chatty Factories, we see a future that empowers UK 
manufacturing companies with the capability to harness AI 
and ‘Big Data’ (generated from sensors embedded in various 
types of products) in real-time, integrating this as part of the 
design and manufacturing process by feeding information that 
reshapes not only the design but also training the robots and 
humans on the factory floor – ultimately cutting long-term 
R&D costs and optimising the production process all wrapped 
with an intuitive and adaptive IoT/IT/OT Security 
Architecture. 
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